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ABSTRACT

Recently, Shealy and Stout (1993) proposed a DIF detecting-procedure SIBTEST,

which is 1) IRT model based, 2) non-parametric, 3) does not require IRF estimation, 4)

provides a test of significance, and 5) estimates the amount of DIF. Current versions of

SIBTEST can only be used for dichotomously scored items. However, in this paper an

extension to handle polytomous items is developed. This paper presents: (1) a discus-

sion of an appropriate definition of DIF for polytomously scored items, (2) a modified

SIBTEST procedure for detecting DIF for polytomous items, and (3) the results of two

simulation studies comparing the modified SIBTEST with the Mantel and SMD pro-

cedures, one study with data constrained by the Rasch-like partial credit model (same

discrimination across polytomous items), and the other study with data having distinctly

discrimations across items. These simulation studies indicate that the methodology of

including the studied item in matching subtest for controling impact induced (group abil-

ity differences existing) Type I error tends to yield Type-I/Type II error inflation rates

that are highly unacceptable when the equal discrimination condition is violated. These

simulation studies provide compelling evidence that the modified SIBTEST procedure is

much more robust with regard to controlling impact-induced Type I error rate inflation

than the other procedures.

Key words: item bias. differential item functioning, DIF, item response theory, polyto-

mous item, partial credit model, generalized partial credit model, graded response model,

invariance, ordered categories, SIBTEST.



1. Introduction

The increased use of ordinally scored polytomous items in educational achieve-

ment tests has generated considerable interest in the development of DIF detection meth-

ods for such items (Dorans & Schmitt, 1993; Miller & Spray, 1993; Welch Sz Hoover, 1993;

Zwick, Donoghue, & Grima, 1993).

For binary scored items a variety of approaches for detecting -differential item func-

tioning (DIF) have been well established (see the volume edited by Holland iSz Wainer,

1993, for an up-to-date review of a number of these approaches). Dorans and Potenza

(1994) recently proposed a two-dimensional framework for classifying these procedures.

On one dimension, they distinguish between procedures that use an observed score as a

matching variable versus procedures that match groups in terms of an estimate of a la-

tent variable. On the second dimension, they distinguish between parametric approaches

that assume a parametric functional form for the item response function versus proce-

dures that do not make such assumptions, i.e., non-parametric approaches. Examples

of observed-score/non-parametric approaches are the standardization method (Dorans &

Kulick, 1986) and the Mantel-Haenszel procedure (Holland Sz Thayer, 1988). An exam-

ple of an observed-score/parametric approach is a logistic regression procedure (Rogers

Swaminathan, 1990). Examples of latent-variable/parametric procedures are the item

response theory (IRT) methods discussed in Thissen, Steinberg, and Wainer (1993). The

SIBTEST procedure proposed by Shealy and Stout (1993) was described as a latent-

variable/non-parametric approach. To avoid confusion, we note here that the observed

score is used by SIBTEST as part of the process of achieving groups matched on a latent

variable.

Observed-score/non-parametric generalizations for ordinally scored polytomous items

have already been suggested by Dorans and Schmitt (1993), Welch and Hoover (1993),

and Zwick et.al. (1993). The existence and use of item response models like the partial

credit model (Masters. 1982), the generalized partial credit model (Muraki, 1992), and

the graded-response model (Samejima, 1969) offer the opport unity for generalizations of

latent-variable/parametric approaches.

1
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The current paper describes a relatively simple extension of the latent-variable/non-

parametric SIBTEST procedure for use with polytomously scored items. The paper is

organized as follows. First, a discussion of an appropriate definition of DIF for polyto-

mously scored items is presented. Next, the modified SIBTEST procedure is described.

An ensuin, ..ection presents two simulation studies which evaluate the performance of

SIBTEST by comparing its performance to two of the observed-score/non-parametric

ordinal polytomous procedures reported on to date in the literature. The first study

compares the modified SIBTEST procedure with the Mantel procedure (Zwick et al.,

1993) and the standardized mean difference (SMD) procedure (Dorans Sz Schmitt, 1993)

using data constrained by the partial credit model (same discrimination across polyto-

mous items). The second study compares the three procedures for use with data having

distinct discrimination across items. The final section discusses directions for future

work.

2. Conceptualization of DIF for Ordinal Polytomous Items

A Review of Dichotomous DIF Modeling

Observed-score IF methods for binary scored items assume a common definition of

null DIF that an item does not exhibit DIF if the regression of item score on matching

score is identical for the groups under study.

Definition 1 (Observed Score Version of Null-DIF) Let Y be the score of an item under

study and X be the matching score. Denote ER[Y1X] and EF[YIX] as regrcssions of Y

on X for reference and focal groups, respectively. An item does not exhibit DIF if

ER[YIX]= EF[Y IX] for all values o f X.

Latent-variable methods (both non-parametric and parametric) assume that an item does

not exhibit DIF if its latent variable IRFs are identical for the groups under study.

Definition 2 (Latent Variable Version of Null-DIF) Let ER[Y 10] and Fb-[Y10] denote

the regressions of Y on latent variable 0 for reference and focal groups, respectively. An

2 7



item does not exhibit DIF

ER[Y101= EF[YI0] for all values of 0. (1)

(Note that in the IRT literature ER[Y10] and EF[YI0] are referred to as item response

functions or IRFs.) The observed-score and latent-variable null DIF definitions are not

in general equivalent, and several authors (Holland & Thayer, 1988; Zwick, 1990; and,

Meredith Si Millsap, 1992) have discussed specific conditions required for their equiva-

lence.

A Definition of DIF for Polytomously Scored Items

Observed-score/non-parametric procedures for ordinal items, such as Dorans and

Schmitt's (1993) standardization based approach and the Mantel procedure suggested

by Zwick et. al. (1993), adopt a definition of null DIF that is analogous to Definition 1.

In these approaches an item exhibits null DIF if the regression of ordinal item score on the

matching test score is identical for the groups under study. One possible generalization of

an IRT latent variable definition of null DIF for ordinal polytomous items would require

that the regression of ordinal item score on the latent variable be identical for the groups

under study.

Let Y be the score on the studied item. Assume Y can be scored in terms of ni+1

ordered categories (e.g., Y = k, 0 < k < m). Let Pk,9(0) denote the item category

response function (ICRF), the probability of getting score k for a randomly sampled

examinee with proficiency 8 from group g (g = R or F). The regression of item score on

ability can be defined as a weighted sum of ICRFs:

Eg[1710) = E kPk,9(0). (2)
k=1

In analogy to the binary case, we will refer to this regression as an item response func-

tion (IRF). It should be noted that binary scored items can also be viewed as ordinal

polytomous items with in = 1. In such cases P1,9(0) = E9[YI0} and Po,g(0) = 1 P1,9(0).

3



For dichotomous IRT models the structure of an item is obviously completely determined

by the specification of its IRF. In other words, Eg[Y10] corresponds to a unique set of

ICRFs. Equality of IRFs implies equality of ICU's. However, for polytomous models,

the item structure is in general only completely determined if all m ICRFs are specified.

More specifically, it is not guaranteed that a unique correspondence exists between an

IRF and a set of ICRFs. If equation (1) does not in general imply_

PkR(0) = Pkp(0), k = 1,...,m, for all 0, (3)

where PkR(0) Pkb-(9) are ICRFs for reference and focal groups respectively, one might

prefer to use (3) as the latent variable Nu 11-DIF definition. Chang and Mazzeo (1994)

have proved that Equation (1) does indeed imply Equation (3) for three of the most com-

monly used ordinal item response models the partial credit model (Masters, 1982), the

generalized partial credit model (Muraki, 1992), and the graded response model (Same-

jima, 1969). Therefore, for the most commonly used polytomous parametric IRT models,

a unique correspondence does exists indeed between an IRF and a set of ICRFs. As-

sessing DIF only with respect to differences in IRFs across ability groups suffices in such

cases; no information is lost by comparing only the IRFs. In what follows, Definition 2 is

adopted as our latent variable IRF definition of null DIF for ordinally scored polytomous

items.

3. An Extension of SIBTEST for Polytomous Items

Shealy-Stout's Multidimensional Viewpoint

SIBTEST, like many other procedures, defines non-DIF in terms of invariant target

ability IRFs across groups. Heuristically, Shealy and Stout (1993) model DIF (which for

technical reasons they sometimes call "bias") by postulating a multidimensional latent

_space {0,0}, where 0 is referred to as the target ability (the unidirnensional ability the

test is designed to measure) and 71 is referred to as a nuisance ability (the ability being

measured by the test that is not part of the target ability, 77 possibly multidimensional).
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Denote P(0,7)) as the joint IRF for the studied item. The combined (0,77) is assumed

complete. Hence it follovc s that P(0,0 does not differ across groups. The marginal IRFs

of the studied item for the focal and reference gr( lips can be obtained by the following

integrations

and

EF[Y19] -E- EF[P(0.77)19] P(O,77)fF(7710)d17 ,

ER[1191 a: ER[P(61,0191 J P(0,77)fR(7710)A,

where fF(TIIO) and fR(7710) are the conditional density functions of 77 at a given 0 for the

focal and reference groups, respectively. Here the IRFs are marginal in the sense that

7/ is integrated out according to the conditional densities. Hence, latent variable DIF is

said to take place at a given 0 level if ER[Y 10] EF[Y10] (agreeing with Definition 2),

and the amount of DIF at 0 is measured by

B0(0) E ER[Y-10] EF[Y10]. (4)

It is clear from the discussions in the previous section that an IRT-based Dn.' definition

for ordinally scored polytomous items can be given from the item structure invariance

perspective:

Definition 3 (Latent Variable IRT Version of DIF) DIF is said to occur at 0 if Bo(9)

0.

A global index of DIF in the ordinal polytomous case can be defined in exactly the same

way as Shealy and Stout (1993) do for the dichotomous case:

= B0(0)fr(0)d0, (5)

that is. as the expected amount of DIF experienced by a randomly selected F group

examinee.
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Extension of SIBTEST to Polytomous Case

Designed for use in in the dichotomous case, SIBTEST is a statistical procedure

for testing Ho : = 0 vs. HA : # 0 0. A statistical test procedure for detecting

polytomous DIF is obtained by some minor modifications to SIBTEST. The modified

procedure includes dichotomous item scoring as a special case. In using the modified

SIBTEST, the studied item can be either dichotomous or polytomous, and the matching

subtest can consist of both types of items. Hence, the modified SIBTEST is a generalized

version of SIBTEST. In the following we will give a brief description of the modified

SIBTEST procedure (see Shealy & Stout, 1993, for a full description of the original

SIBTEST procedure). Note that dichotomous items are special cases of polytomous

items. Readers can easily verify that all the notations and results in the following apply

to both dichotomous and polytomous items.

Preliminary Notation:

Y: Studied item score which has m + 1 categories (i.e., Y = 0,1, ..., m);

X1, X2, Xy,: item scores for n matching items;

mi, m2, .., my,: the maximum possible scores for X1, X2, ..., Xr,. respectively, e.g., Xi =

0, 1, mi: if mi = 1, then Xi is dichotomously scored;

X =S"" X matching score; X = 0,1, where3*

71H E ni;
J=1

is the maximum possible matching score;

(6)

k: average score on studied item for all group g (g = F or R) examinees for which

X = k;

pFic: proportion of examinees in the focal group getting score X = k on th atching

subtest X1, ..., .X,2; i.e., pFk = NFkINF, where NF is the total number of focal group



examinees and NFk is the total number of focal group examinees with matching

test score X = k;

Pk: proportion of examinees getting score X = k on the matching subtest X1, Xn, i.e.,

Pk = NkIN, where N is the number of total examinees and Nk is defined by

Nk = NRk NFk

It should be indicated here that only two modifications to the SIBTEST procedure

are needed in order to make it applicable to polytomously scored items. One is to replace

n in the SIBTEST test statistic (Shealy Sz.. Stout, 1993) with nH as defined in (6) so that

there will be nH + 1 matching scores; and the other is to replace the KR20 coefficient

a estimate used by Shealy and Stout in their true score regression estimators (see (21)

and (22) below) with Cronbach's standard coefficient a estimate (Lord & Novick. p.89,

1968):

'de =
n 1 [1

E7.1 er1,1
j (7)

where :3-3( is the sample variance of Xi; j = 1, n; and, 31 is the sample variance

of X = E7.=1 X. Notice that the KR20 formula is for dichotomous items only, while

formula (7) can be generally used for either polytomous or dichotomous items. In the

dichotomous case, the two expressions are identical.

Understanding SIBTEST

Since the adaptation of SIBTEST to the polytomous case is so straightforward, an

important role of Section 3 is in presenting a clear explanation of the SIBTEST procedure.

Despite its IRT origin, SIBTEST can also be understood from a classical test theory

perspective and, as Shealy and Stout (1993) point out, its use is not predicated on

adopting their multidimensional IRT-based conception of DIF. The procedure neither

requires nor uses IRT ability or item parameter estimates for its calculation.

Assume a classical test (true score) theory representation for X. i.e.. X = T + E.
where T denotes the matching test true score for a randomly selected examinee. The

7 1 2



variable E = X T denotes the measurement error and is assumed to have mean zero

in both groups. Let fg(t) be the density of matching test true scores in group g, g = R

or F. We will consider the regression of studied item score on matching test true score

in group g and denote this regression as E Art] = E[Y IT = t, G = g].

Definition 4 (Latent Variable Version of Null-DIF via True Score Theory) A stud-

ied item is defined as being free of DIF when, for all values of true matching score t,

E R[Y it] = EF[rt].

If matching test items are ordinally scored polytomous items and follow the partial

credit model, generalized partial credit model, or the logistic graded response model,

matching test true scores are a strictly monotonic transformation of 0 (Chang, 1994).

Therefore, matching-test true scores are simply a one-to-one transformation of the latent

variable 0. According to Chang and Mazzeo (1994), an item being free of DIF according

to Definition 4 implies that the item parameters in E R[Y lt] must be the same as those

in .EF[Y It]. Such a null DIF definition as Definition 4 is consistent with the definition of

measurement invariance given in Meredith and Millsap (1992). Under the above condi-

tions, Definition 4 is equivalent to an IRT latent variable definition formulated in terms

of identity of item parameters for all ICRFs across groups. This result is important in

that it indicates that no information is lost by comparing only conditional item score

means in the assessment of IRT DIF. Note that in the dichotomous case, Definitions 2

and 4 are equivalent.

The SIBTEST procedure was designed primarily to detect what Shealy and Stout

(1993) refer to as unidirectional DIF.

Definition 5 (Unidirectional DIF, a latent variable true score theory version) A studied

item exhibits unidirectional DIF against the focal group if, for all t, ER[rt] > EF[YIt],

and En[Yit] > EF[YIt] for some values of t; a studied item exhibits unidirectional DIF

against the reference group if, for all t, ER[Ylt] EF[Ylt], and Erallit} < EF[17 It] for

some values of t.
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Analogous to (4), the local measure of D1F at t can be defined as B(t) = ER[Y1t]

EF[rt]. Thus, the corresponding DIF index with respect to a density fF(t) can be

defined as 13 = f B(t)fF(t)dt. In the unidimensional IRT case, ,3 is of course the same as

in (5), as seen by a change of variable calculus argument.

By naive intuition, DIF could be estimated locally by the values of

dk = YRk YFkl k = OI ***3 (8)

because PRk Y."Fk is the group difference in performance on the studied item among

exarninees with the same matching test score. This is consistent with the observed-score

definition of null-DIF. If we are able to validly assume examinees with the same matching

test score lircve (approximately) the same 0 ability (which in fact will be true if either the

matching test is long enough to be highly reliable or the groups under study have similar

0 ability distributions), then (8) is also approximately the difference in item scores at

the same target ability. If the studied item does not have observed-score DIF, we expect

dk 0. Thus, a suggested statistic to estimate the DIF [3 for the special case where R

and F have the same target 0 distribution is:

nH

= ENdk (9)

Note that, instead of pFk, weights pk here are used for better Type I error control (see

Shealy & Stout, 1993). A test statistic can be defined by

where

B=
er(13)'

(6-2(y1k,R) er2(Ylk,F)11/2

NRk NFk

(10)

and "6-2(Ylk,g) is the sample variance of the studied item scores for examinees in group g

(g = R or F) with a total score X = k on the matching subtest. When R and F have the

9 14



same target ability distributions, it is not difficult to justify by the central limit theorem

that, when )8 = 0, the distribution of B defined in (10) is N(0,1).

Regression CorrectionType I Error Control. Unfortunately, the test statistic

B defined in (10) tends to display highly inflated impact-induced (i.e., caused by the

existence of uoup ability differences) Type I error rate. To further explain this, let the

studied item have no DIF, and let reference matching true score TR be stochastically

greater than that for focal group, say, TF. It is obvious that Yi Rk and 1./Fk are unbiased

estimators of E[YIX = k, C = R] and E[Y1X = k, G = F] respectively. By the result

from elementary statistics that E[E[AIB]] = E[A] for random variables A and B, we

obtain

E[YRkj = E[YIX = k,G = R] = R(TR)IX = k,G = R], (11)

where I R(TR) = E[YITR, X = k,G Similarly,

E[kFk] = E[YIX = k , G = F] = F(TF)IX = k, G = F], (12)

where I F(Tp) = E[Y" ITF, X = k, C = F]. Note that /R and /F are item response functions

for the studied item for R and F respectively. Since the studied item and the matching

items have no DIF, it is easy to see that

R(t) = F(t), for all values of t. (13)

Because TR is stochastically gre->ter than TF, it is also clear that the distribution of TR

conditioning on X = k is stochastically larger than the distribution of TF conditioning

on X = k. Then by (11), (12), and (13), and noting that I R(t) = F(t) can be shown to

be increasing in t by the assumption of monotonicity of IRFs, we expect

E[dk] = E[YRk] E[YFk] > 0 (14)

10
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for all k. Thus, matching on matching test observed score does not produce true score

matching. Let tR,k denote the expected matching test true score for reference group

examinees with a matching test score of k, i.e..

tR,k = E[TIX = k,G = R], (15)

and let tp-,k denote the analogous quantity for the focal group. Noting (8) and (9),

and using (14), in general, the B of (10) is statistically inflated when the focal and

the reference group, have different distributions of 0, even if no DIF is present. In

particular, when the focal group true-score distribution is stochastically less than that

of the reference group, one might expect that the 4 will tend to indicate spurious DIF

by confounding impact, the difference between tR,k and tF,k, with DIF, the difference in

ER[Ylt] and EF[Yit].

Just as with SIBTEST in the dichotomous case, the modified SIBTEST estimates

ERVItd EF[Yltd, k = 0, ...,nH (16)

where tk = (tR,k + tF,k)/2. Note that tk in (16) is the same for R and F groups. Let

Sg(t)= Eg[Ylt]. Then (16) can be rewritten as

SR(tk) SF(tk), k =0, 1, ..., nfi (17)

Since (17) is the difference in expected studied item scores for the two groups where the

examinees are matched according to the same matching test true score tk, k = 0,1, ...,

if there is no latent variable DIF, examinees with the same matching true score will have

the same expected studied scores, regardless of group membership.

Now we have to estimate the terms of (17). Assume that Sg(t) is a locally linear

function of t. That is, intuitively, it is allowed curvature, but no abrupt change in slope.

By Taylor expansion. SR(t) SR(to) SR1(to)(t to), where SW(to) can be obtained by

11 1



mean value theorem

where a < to < b. Thus,

SR(b) SR(a)
b a

SR(tk) c-' SR(tR,k) SR' (tak)(tk tR,k)

It is obvious that tR.k-1 < tR,k < tRjc+1 Also

SR(tR,k+i) SR(tak-1)
SR (tR,k)

tR,k+1 tR,k-1

(18)

where SR(tR,k+1), SR(tR,k), and SR(tR,k-1) can be estimated by CZR,k+1. Y-Rk, and 177R,k-1,

respectively. Following Shealy and Stout (1993), as (18) suggests we estimate SR(tk) by

C
17-R k+1 FR,k-1

"TR*k = tR,k J
tR,k+1 tR,k-1

Similarly, SF(tk) can be estimated by

(19)

F'k
YF,k+1

P' YiFk tF,k) (20)
tF,k+1 tF.k-1

In order to compute (19) and (20), one has to obtain the true score regression

estimates:

IR,k .E[TIX = k, G (21)

taking

E[TIX = k, G = Fl. (22)

;' k iF,k
Lk =

2
(23)

These true score regression estimates (21) and (22) are obtained by assuming a linear

regression approximation to the matching test true score regression on matching test

observed score and estimating its slope using a classical coefficient a reliability estimate

(see (7)).



Define dk- = );Iik ?Flo k = 0, ..., nH. Equations (19) (23) imply that dk* is

obtained by a transformation of PRk "fiFk, i.e.,

1.rRkYFk'RkFk (24)

This transformation is referred to as "the regression correction' by Shealy and Stout

(1993). Therefore, instead of ;3 in (10), ;3* = Ergo Pkdk' is emPloyed in the modified

SIBTEST and as well as in the original SIBTEST. Notice that when (14) happens as a

result of impact, (24) removes the statistically inflating effect. of impact so that the distri-

bution of Y/iik Y/Pic has approximately mean 0 when Ho is true (see Shealy IQ Stout, 1993,

for details). Moreover, B is N(0,1) when Ho is true. Thus, we reject Ho if IBI > 1.96

at significance level 0.05 under the alternative hypothesis of DIF against either group.

Two Related Procedures: Mantel and SMD.

It should be mentioned that when the studied item is included in the calculation of

matching test score, B in (10) is just the SMD index. The SMD .procedure is a general-

ization of the standardization method (Dorans & Ku lick. 1986). The Mantel procedure is

an extension of the MH procedure and is specifically generalized for ordered categorical

data. It is very similar to the SMD procedure in that it compares the average studied

item score conditioning on the matching score for the R and F groups. The Mantel pro-

cedure (as adapted for use in DIF research) also includes the studied item in its matching

test.

The fundamental difference between the SIBTEST and the Mantel and SMD proce-

dures is the way they confront the statistical inference problem caused by the presence of a

difference between focal and reference target ability distributions. The Mantel and SMD

procedures deal with this problem by including the single studied item in the matching

test, while SIBTEST controls such inflated Type I error by the "regression correction",

a non-parametric model based linear transformation.

Results from the Mantel and SMD procedures will be compared with that of the
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SIBTEST procedure in a section below. (See Zwick et. al., 1993, and Dorans & Schimitt,

1993, for details about these procedures.)

4. Simulation Studies

Two simulation studies are included in this section. The first one compares SIBTEST

with the Mantel and SMD procedures for data simulated under the Rasch-like model

constraints of equal discriminations across polytomous items like-those imposed by the

partial credit model (Masters, 1982). The second one compares SIBTEST performance

with that of the Mantel and SMD procedures with "non-Rasch" data, as generated by

the generalized partial credit model (Muraki, 1992), which allows varying discrimination

across polytomous items. The first study indicates that, in terms of Type-I error rate

and power, the performance of SIBTEST is essentially as good as that of the Mantel and

SMD procedures for data constrained by equal discrimination across polytomous items.

The second study indicates that, when the equal discrimination constraint is violated in

a realistic manner, the Mantel and SMD procedures each tends to have unacceptably

high rates of either Type-I or Type-II errors. More specifically, the Mantel and SMD

procedures tend to flag a non-DIF item as a DIF item when it is either more or less

discriminating than the average discrimination uf the items that make up the matching

test. Moreover, the Mantel and SMD procedures often fail to flag a DIF item if it is less

discriminating than the average discrimination of the matching test. By contrast, the

modified SIBTEST procedure was found to be much more robust with regard to control-

ling impact-induced Type I/Type Il error rates inflation than the other procedures.

Study I: Polytomous Items that Follow Partial Credit Model

Zwick et al. (1993) conducted a simulation study to evaluate the Mantel procedure in

detecting DIF with polytomous items following the partial credit model (Masters, 1982).

Their design included 54 conditions across different items, ability groups, and types of

DIF. The study is so well designed that we resolved to use the same design to compare

the performance of the SIBTEST procedure with the Mantel and SMD procedures for

polytomous items which follow the Rasch-like partial credit model.



Matching Test. The matching subtest consisted of 24 items (25 for Mantel and SMD,

because of inclusion of studied item), 20 dichotomously scored items and 4 (5 for Mantel

and SMD) 4-category ordinally-scored items (scored as 0, 1, 2, or 3). The 3PL model

defined below with a common c=0.15 was used to generate item responses for the di-

chotomous items.

1 c
P3(9) = + 1 + exp{1.7a3(0 b3)}'

(25)

The partial credit model def. tied below was used for generating item responses for the

4-category ordinally-scored items.

exp{V-0(0 bii)}
Ppc(9) = OexpIEL009 4501'

k = 0, 1, 2, 3, (26)

where j = 21, 22, 23, 24 indicates item number, and for notational convenience, E?.o(O

0. It is to be noted that the partial credit model is a natural generalization of

the Rasch dichotomous model in that all items have the same discrimination parameters.

It should also be noted that while the usual scale factor of D=1.7 was used in the 3PL

model (25) for the matching test, this factor is not employed in (26). Thus the model in

(26) cab be equivalently written by including a discrimination parameter of 0.588 along

with a scaling factor D=1.7 is used. The item parameters for the matching test items

are identical to those used by Zwick et. al.. (See Table 1.)

DIF and Null DIF Modeling. The three studied items are all 4-catepry polytomous

items. The partial credit model defined in (26) was used to create DIF by adding a group

index g to the item parameters in order to simulate responses of studied items for focal

and reference groups respectively. Specifically,

expla0(0 bjig)}
P3kg(0)

Et-.0 expIEL-0(0
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Dichotomous Item Parameters
Item Number ai bi ci

1 0.741 -2.25 0.15
2 0.861 -2.00 0.15
3 1.162 -1.75 0.15
4 0.638 -1.50 0.15
5 1.000 -1.25 0.15
6 1.000 -1.00 0.15
7 1.162 -0.75 0.15
8 0.638 -0.50 0.15
9 0.741 -0.25 0.15
10 0.861 0.00 0.15
11 1.000 0.00 0.15
12 0.741 0.25 0.15
13 1.162 0.50 0.15
14 0.638 0.75 0.15
15 0.861 1.00 0.15
16 0.638 1.25 0.15
17 0.741 1.50 0.15
18 1.162 1.75 0.15
19 1.000 2.00 0.15
20 0.861 2.25 0.15

Polytomous Item Parameters
Item Number bil bi2 b13

21 -0.91 -0.93 1.29
22 -1.34 1.72 3.40
23 -1.76 0.09 0.19
24 -2.20 -1.33 -0.48

Table 1: Item Parameters in the Matching Test (Items 1-24)

where j = 1, 2, 3 indicates studied item number and g = R, F denotes reference or focal

group. For each studied item, the four types of DIF were modeled. The DIF types

were referred to by Zwick et. al. (1993) as constant, low-shift, high-shift, and balanced

DIE Figure 1 shows each type of DIF in terms of IRFs, for one of the three studied

items. It is clear from the figure that the first three types DIF are unidirectional and the

fourth is non-unidirectional. For the three studied items, the reference group threshold

parameters were (-.91,.98,.21), (-2.25,-1.8,1.66), and (-.54,-2.11,.74), respectively. The

focal group studied item threshold parameters were defined by b3i r = C, where

C = 0.0, 0.1 or 0.25. The C = 0 condition results in a null DIF cDridition. Zech of the

four types of DIF were crossed with 2 nonzero magnitudes of DIF (C =.10 and C
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yielding a total of 8 DIF conditions each containing 3 studied items. Thus, the simula-

tion involved the use of 27 studied items, 24 of which exhibited DIF of varying types and

to varying degrees and three of which exhibited no DIF. (See Zwick et. al. (1993) for

detailed descriptions about the DIF modeling.)

INSERT FIG 1 ABOUT HERE

Reference and Focal Groups. The performance of the DIF detection procedures was

studied under two conditions: (1) no difference in ability distributions across groups; and

(2) a substantial but realistic difference in ability distributions between the two groups.

For the reference group, Os were always sampled from N(0,1). For the focal group,

however, two conditions were considered, N(0,1) and N(-1,1). For each replication, 300

0 values were sampled for each of the two groups.

Simulation Procedure. There were a total of 54 cells in the design, 2 focal group 0

distributions (N(0,1) and N(-1,1)) crossed with 27 studied items (4 types of DIF crossed

with two magnitudes of DIF crossed with 3 DIF items plus 3 null DIF items). For each

cell, 600 replications were carried out. Each replication involved the following steps: (1)

generate 500 0 values for reference and focal groups respectively, according to appropriate

distributions; (2) generate item responses according to the appropriate item parameters

for each sampled 0 value; (3) perform the three procedures to calculate their respective

DIF statistics.

Simulation Results of Study I

Table 2 provides rejection rates for all nine conditions. Each percentage (in the Aver-

age columns) in the table is averaged over the three studied items and the two distribution

conditions. There are 600 replications for each studied item and each distribution con-

dition, so that the proportions in the table (in the Average columns) are based on 3600
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Type of DIF Mantel
Rej. Rate
Average

SMD
Rej. Rate
Average Average

SIBTEST
Rej. Rate

Focal:N(0,1) Focal:N(-1,1)
NULL 0.049 0.046 0.063 0.041 0.085
Constant 0.10 0.176 0.174 0.173 0.189 0.156
Constant 0.25 0.733 0.720 0.698 0.751 0.644
Balanced 0.10 0.045 0.045 0.061 0.045 0.078
Balanced 0.25 0.061 0.059 0.068 0.067 0.069
Low Shift 0.10 0.063 0.062 0.071 0.053 0.089
Low Shift 0.25 0.125 0.119 0.119 0.103 0.135
High Shift 0.10 0.058 0.058 0.064 0.063 0.065
High Shift 0.25 0.121 0.127 0.126 0.149 0.102

Table 2: Rejection Rates for Mantel, SMD, and SIBTEST Procedures.

replications.

The type I error rates were 0.049 and 0.046 for the Mantel and SMD procedures

respectively, excellent adherence to the nominal Type I error rate. By comparison, the

Type I error rate for the SIBTEST procedure was 0.063 (0.041 for the focal condition

N(0,1), and 0.085 for the focal condition N(-1,1), recalling that the reference condition

is always N(0,1)), a slight inflation.

Besides Type I error, Table 2 also presents the rejection rates in the power study.

SIBTEST appears to be as powerful as Mantel and SMD in detecting unidirectional DIF

items. For the constant 0.10 DIF condition, rejection rates were 0.176 and 0.174 for the

Mantel and SMD procedures, respectively. For the SIBTEST procedure, the correspond-

ing rate was 0.173. For the constant 0.25 DIF condition, rejection rates were 0.733 and

0.720 for the Mantel and SMD procedures, respectively. For the SIBTEST procedure,

the corresponding rate was 0.698 (0.751 for the focal condition N(0,1) and 0.644 for the

focal condition N(-1,1)). Thus, the SIBTEST procedure had a slightly lower rejection

rate than the Mantel and SMD procedures. When the focal and reference distributions

are different, the SIBTEST procedure tends to have either slightly inflated Type I er-

ror rate or slightly lower power. These phenomena may be due to a tendency to "over

regression-correct" for group ability differences. In other words, SIBTEST seems to push

the center of the testing statistic's distribution from the right hand side of 0 before the
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regression correction slightly to the left hand side of 0 after the regression correction. It

should be noted that the results of Mantel reported here are very similar to the those

reported in Zwick et al.

Study II: Polytomous Items that Follow a Generalized Partial Credit Model

Study I suggests that the performance of the Mantel and SMD procedures was

slightly better than that of SIBTEST when used with polytomous items that follow the

Rasch-like partial credit model, although the SIBTEST performance is good nonetheless.

The focus of Study II is on the performance of these three DIP' procedures for polyto-

mous items that vary in discrimination. Such a study is important from an applications

perspective to determine for matching tests that are moderate in length whether DIF

procedures produce unacceptably high Type I error rates for studied items with realistic

item parameters that are more or less discriminating than the items that make up the

matching test.

The design of Study II is similar to the dichotomous item DIF study reported by

Roussos and Stout (1994). Their study clearly shows that the Mantel Haenszel procedure

has much greater Type I error inflation rates than does SIBTEST when studied-item dis-

crimination parameters depart from those included in the matching test. By analogy,

one would suspect that the Mantel/SIBTEST comparisons might produce similar results

in the polytomous case.

Matching Test. A single 24-item (25 for Mantel and SMD) matching test was used in

Study II for SIB TEST. The matching test consisted of 20 dichotomous items and 4 (5 for

Mantel and SMD) 4-category polytomous items. The dichotomous items were assumed

to follow a 3PL model and the same item parameters as in Study I (see Table 1) were

used. For matching test and studied polytomous items, however, we used a generalized

partial credit model (Muraki, 1992):

exp{1.7a; E00 kninP{Xi = 1d°) = EL0exp{1.7aj
b5c)}
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Polytomous Item Parameters
Item Number a i bil bi2 b13

21 0.563 -2.449 -0.089 2.416
22 1.359 -0.342 1.008 1.797
23 0.535 -1.804 -0.368 0.219
24 0.779 -0.345 2.428 2.822

Table 3: Item Parameters for Polytomous Items in Study II Matching Test (Items 21-24)

where a3 denotes the discrimination parameter, and ELo (0 b3v) E 0 for notational

convenience. It should be noted that the partial credit model defined in (26) is a special

case of the generalized partial credit model with ai E 0.588. Obviously, the equation in

(28) can be easily used to represent items with different discriminations by varying the

value of the a3-parameter. Table 3 contains the item parameters for the matching test

polytomous items. These parameter values were taken from an actual calibration for the

1992 National Assessment of Educational Progress (Johnson and Carlson, 1994). The

resulting matching test has an average a3 value of 0.869, and the standard deviation of

a is 0.218.

Studied Items. A total of eleven polytomous studied items were included in Study

II. These items shared a common set of reference group threshold parameters (-1,0,1)

but had different discrimination parameters. The eleven values for the discrimination

parameters were 2.0, 1.5, 1.36, 1.12, 1.0, 0.869. 0.588, 0.33. 0.25, 0.23, and 0.15. A

strong case for the appropriateness and the realism of the selected item discrimination

parameters can be made. The value 0.869 is t'.0e average matching test discrimination.

The other values were chosen based on the actual calibration of the 1992 NAEP analysis

referred to above. (Johnson and Carlson, Appendix E, 1994). The values 0.33 and

1.12 are respectively the 10-th and 90-th percentiles of the distribution of discrimination

parameter estimates for the 1992 NAEP Reading item pool. The 0.23 and 1.36 values

are respectively the smallest and largest estimated discrimination parameters in the pool.

It is certainly possible that other tests could produce more extreme values. Thus, the
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range of discrimination parameters from 0.25 to 1.5 for the simulation was extruded still

further to include the values 0.15 and 2.0.

Two DIF conditions were examined. The first condition was the null-DIF condition in

which the R and F groups studied-item parameters were identical. The econd condition,

was the same "constant" DIF condition in Study I. The level of threshold shift was 0.25.

Thus, the focal group thresholds for the studied items were (-0.75,0.25,1.25) compared

to (-1,0,1) for the reference group. The threshold shift of 0.25 was paired with each of

the 11 discrimination parameters. It should be noted however, that the amount of DIF

in the studied item (as measured in terms of differences between IRFs) depends on both

the threshold and the discrimination parameters values.

Ability Distributions. Previous work with a variety of DIF procedures suggests that

many work well when there are no group ability differences. Therefore, Study II consid-

ered only the case where such differences are present. Focal group abilities were sampled

from N(-1,1). Reference group abilities were sampled from N(0,1). Thus, in the second

study, the F group ability distribution is stochastically smaller than the R group distri-

bution. Several researchers (e.g., Mullis, Dossey, Owen, & Phillips, 1993, and Donoghue.

Holland, & Thayer, 1993) report that a difference in ability means of one standard devi-

ation is often common between certain focal and reference groups of interest. Thus the

choice of ability distributions is realistic.

Simulation procedure. The single matching test was paired with each of the 11 null-

DIF studied items and each of the 11 DIF magnitudes to form 22 experimental conditions.

For each condition, 1,000 replications were carried out. For each replication, 500 simu-

lated 0 values were sampled from the focal and reference group distributions. For five

of the 11 Null DIF conditions (a=.23, .33, .588, 1.12, 1.36) additional replications weie

carried out at increased sample sizes. An additional 1,000 replications of the procedures

were run with both R and F sample sizes set at 1,000 and 2,000. For each simulee.

item responses to matching test and studied items were generated in accordance wit h
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the model described above. The simulated item responses were then analyzed with each

of the three DIF procedures.

Simulation Results of Study II

Type I Error Rate Study. Table 4 provides Type I error rates for the 11 null-DIF

items for the case of a sample size of 500 for each group. Both the Mantel and SMD

procedures exhibit highly inflated Type I error rates (with rejection rates as high as

40%) when the discrimination parameter of the studied item differs from the average

discrimination of the matching test items, i.e., a; = 0.869. A. somewhat surprising

result is that the studied item for which Mantel and SMD exhibited error rates closest

to the nominal 0.05 level (i.e., a; = 0.588) was not the studied item with a parameter

value equal to that average matching test discrimination. It may be that both average

level and degree of dispersion of matching test discriminations are important or that

the relationship is complicated by the presence of non-zero guessing parameters for the

dichotomous items. This is an interesting topic for further research. Note also that, when

a = 0.588, the generalized partial credit model in (28) is equivalent to the partial credit

model in (26). By contrast, SIBTEST, while displaying evidence of mild increased error

rates for more extreme discrimination parameters, is considerably more robust. Its Type

1 error rates ranged only from 0.061 to 0.093 across the eleven studied items.

Table 5 presents Type I error rates for the selected 5 null-DIF items that were run

with expanded sample sizes. It is evident that the Type I error rates of Mantel and SMD

are driven not only by the discrimination parameter values but also by sample sizes.

When the sample size increases for both R and F groups within a realistic range, the

false rejection rates increase dramatically. It marked contrast that the Type I error rate

of the SIBTEST procedu) e remains reasonably consistent despite the increase in sample

sizes (from 500/500 to 1000/1000 and even to 2000/2000).

In hypothesis testing, it is often true (as it should be) that power will increase when

sample size increases. By contrast, Table 5 shows that the Type I error rates of Mantel
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a ; -Parameters Mantel SMD SIBTEST
2.000 0.450 0.415 0.093
1.500 0.310 0.303 0.082
1.360 0.236 0.222 0.078
1.120 0.154 0.148 0.078
1.000 0.114 0.101 0.077
0.869 0.098 0.091 0.079
0.588 0.053 0.049 0.070
0.330 0.218 0.229 0.073
0.250 0.239 0.240 0.083
0.230 0.282 0.291 0.061
0.150 0.417 0.405 0.086

Table 4: Empirical Type I Error for Three Polytomous DIF Procedures as a Function
of Studied Item Discrimination Parameter. (Results are based on 1,000 replications and
a. sample size of 500 for each group.)

Sample Size: 500/500
a-values Mantel SMD SIBTEST
a=1.360 0.236 0.222 0.078
a=1.120 0.154 0.148 0.078
a=0.588 0.053 0.049 0.070
a=0.330 0.218 0.229 0.073
a=0.230 0.282 0.291 0.061

Sample Size: 1000/1000
a-values Mantel SMD SIBTEST
a=1.360 0.438 0.404 0.081
a=1.120 0.311 0.286 0.074
a=0.588 0.048 0.051 0.081
a=0.330 0.227 0.229 0.065
a=0.230 0.446 0.437 0.062

Sample Size: 2000/2000
a-values Mantel SMD SIBTEST
a=1.360 0.723 0.702 0.108
a=1.120 0.484 0.463 0.088
a=0.588 0.058 0.063 0.081
a=0.330 0.411 0.394 0.063
a=0.230 0.747 0.742 0.064

Table 5: EMpirical Type I Error Rates for Three Polytomous DIP Procedures as a
Function of Reference/Focal Sample Size. (Results are based on 1,000 replications. Rates
for the 500/500 sample size are reproduced from Table 4.)
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ai-Parameters Mantel SMD SIBTEST
2.000 1.000 1.000 0.985
1.500 1.000 0.999 0.962
1.360 1.000 0.999 0.953
1.200 0.995 0.992 0.891
1.000 0.982 0.979 0.857
0.869 0.961 0.953 0.811
0.588 0.721 0.679 0.637
0.330 0.127 0.118 0.353
0.250 0.042 0.043 0.243
0.230 0.056 0.054 0.223
0.150 0.131 0.136 0.138

Table 6: Rejection Rates for Three Polytomous DIF Procedures as a Function of Studied
Item Discrimination Parameter for Studied Items Displaying Constant DIF. (Results are
based on 1,000 replications.)

and SMD increase as the sample size increases. This result may at first seem implausible.

On further reflection however the pattern of results is quite sensible. In describing the

Mantel and SMD Nu 11-DIF rejection rates, the term "Type I error rate" is somewhat

misleading. The null hypothesis of Mantel and SMD is not equivalent to the IRT-based

null-DIF definition used in the simulation.

In order to explain this more clearly, it is helpful to repeat the three null D1F

definitions introduced earlier in the paper.

Observed score Ho : ER[YIX] = EF[YIX] for all values of X. (29)

Latent variable true score Ho: ER[YIt] = EF[Yit] for all values of t. (30)

Latent variable IRT Ho : ER[1110] = EF[1110] for all values of 0. (31)

For theoretical and practical reasons, the latent variable definitions are apparently

preferable. Most Monte Carlo studies (e.g. Donoghue et. al., 1993, Welch & Hoover;

1993, Zwick et. al., 1993) and theoretical papers (e.g. Holland & Thayer, 1988, Meredith

Millsap, 1992, Zwick, 1990) use the definitions and methods associated latent variable

DIF in modeling and simulating DIF.

Since the studied items were the same for the for both R and F groups, the data
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simulated has no DIF and thus (31) is true. Since the null hypothesis described by (30)

is equivalent to (31), the rejection rates reported in Table 5 for the SIBTEST procedure

are really Type I error rates for items that are free of DIF. However, the observed score

null hypothesis paraphrased in (29) that in effect is being tested by the Mantel and SMD

procedures is not true under this simulation design (or, for that matter in most DIF

simulation studies which use IRT definitions and methods to model DIF and simulated

data). In general, (29) does not coincide with (31) when (i) the ability distribution of

one group is stochastically larger than that of the other; and (ii) the studied item is

more or less discriminating than the average item discrimination in the matching test

(Meredith & Millsap, 1992, Zwick, 1990). Therefore, except for the a = 0.588 case, the

"Type I error rate" reported in Table 5 for Mantel and SMD should from the statistical

perspective be renamed as "power", i.e., the probability of rejecting the null hypothesis

(29) when it is not true. That is, the increase of "Type I error" is merely the expected

increase in power as sample size increases. It does not seem wise to rename the term

here, however. Obviously, the observed score based Nu 11-DIF definition (29) should be

used with great caution, if one really wants to distinguish impaCt from latent variable

DIF. For that matter, the latent variable definitions are apparently preferable.

Power Study. Table 6 presents rejection rates for the 11 DIF items. All three proce-

dures exhibited higher rejection rates for the items with larger discrimination parameters.

This is as expected since, for a fixed shift in thresholds, the amount of DIF in the item

is directly dependent on the discrimination parameter. For the seven largest discrimi-

nation parameters, the Mantel and SMD procedures did exhibit higher rejection rates

than did SIBTEST, although the SIBTEST rates were quite good nonetheless. Except

for the ai = 0.588 case, the greater Mantel and SMD rejection rates are not caused by

they having greater power against the latent variable null-DIF hypotheses but indeed

is explained by differences in Type I error rates. That is, the power of any hypothesis

testing procedure can be increased by increasing its Type I error. For the four items

with low discriAnination rates, the Mantel and SMD procedures had much greater Type
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I error rates (recall Table 4) coupled with much lower power on average.

Mazzeo and Chang (1994) plotted the histograms of the 1000 SMD statistics indices

calculated from the 1000 replications for the 11 DIF conditions listed in Table 6. They

found that the distributional histograms shape reasonably normal looking. The increase

in detecting DIF against the focal group when the a-parameter is large (false gains) was

caused by the large shift of the testing statistic's distribution to the right of 0. In contrast,

the large loss in power to detecting DIF against the focal group when the a-parameter

small was due to the large shift the distribution to the left of 0. Such shifts which are

closely related to the magnitude of the a-parameter sometimes cause Mantel and SMD

to lose all power, e.g., when a=0.25 (see Table 6). It should be mentioned again that

the Mantel and SMD are two very similar procedures. The main difference is that the

SMD generates approximate N(0,1) statistics, while the Mantel generates approximate

x2(1) statistics. The above explanation clearly illustrates that the direction of the DIF

detected by these two procedures is controlled by a; magnitudes.

5. Discussion

The paper discussed a modified version of the SIBTEST procedure for use with or-

dinal polytomous items and presented two simulation studies to illustrate the efficiency

of the modified procedure. It is very interesting to point out that only two modifica tions

to the original SIBTEST procedure were needed to make it applicable to polytomously

scored items, as well as with tests consisting of both dichotomous and polytomous items.

The simulation results suggest that these modifications made to the SIBTEST procedure

have been essentially successful. It should be re-iterated that the unique correspondence

between IRF and ICRFs (Chang & Mazzeo, 1994) for the commonly used polytomous

IRT models is a useful guide for extending IRT dichotomous item DIF procedures to

the polytomous item context. The natural generalization of an IRT/parametric-based

definition of null DIF for an ordinally scored polytomous item is to require that item

parameters are invariant across the two groups under study. But the Chang and Mazzeo

result shows that an item score based definition is equivalent for commonly used polyto-
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mous models, thus justifying the definition used by the modified SIBTEST.

A hypothesis testing procedure is judged primarily by its power curve, that is, in the

DIF context, by its ability to avoid false flagging (fixed low Type I error rate) of non-DIF

items while detecting DIF items as much power (low Type II error) as possible. The

simulation results here clearly demonstrate the superiority of the SIBTEST method of

controlling impact-induced Type I error. Indeed the second study_ clearly indicates that

the Mantel and SMD procedures may yield unacceptable results from both the Type I

error and Type II error perspectives for DIF analyses of polytomous data even when the

studied item is included in the matching test. The theoretical reason for this kind of

error inflation can be obtained by a generalization of the well documented dichotomous

work by Zwick, 1990; Meredith and Millsap, 1992; and Fischer, 1993. It should be men-

tioned that, according to a study by Allen and Donoghue (1994), for larger but realistic

levels of variation in studied polytomous items discriminations, the impact induced Type

I error inflation of the Mantel procedure is even more serious for shorter length tests (<

20 items).

In contrast, SIBTEST exhibited only small changes in Type I error rates as a func-

tion of studied-item discrimination parameters. Hence, it appears that SIBTEST is

much more robust to violation of Rasch model conditions. The current study shows that

a small but consistent Type I error inflation does occur even with SIBTEST. Thus, a

modification of the SIBTEST regression correction should be developed to better control

the impact-related Type I error inflation. Such a research project has been begun.

There are two limitations in the current simulation design. First, the sample sizes

of both the reference and focal groups are always the same. Second, in order to measure

Type I error and power with total statistical accuracy, it was important to exclude DIF

items from the matching test. In future studies, unequal sample sizes, and a robustness

study of matching subtest contaminated with DIF items, and as well as detection of a

group of DIF items (DTF, see Shealy Sz Stout, 1993) will be considered.
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Figure 1: IRFs of Studied Item I for the Reference and Focal Groups for the 4 DIF
Conditions (C=0.25). Ref. IRF, Foc. IRF.
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